What Silicon Valley Won’t Admit About Technology and Progress

Circa 1871: Thomas Alva Edison (1847–1931) American scientist, inventor. 

Last spring, I finally visited one of the United States’ industrial shrines: the Thomas Edison National Historical Park in West Orange, New Jersey. Before the rise of Silicon Valley, Thomas Edison was the country’s greatest technological celebrity and, even now, no Silicon Valley billionaire approaches Edison’s portfolio of 1,093 US patents. (For example, Amazon’s founder Jeffrey Bezos is on just 81, Facebook’s Mark Zuckerberg is on 31, and Google’s co-founder Sergey Brin is on 20.)

After touring Edison’s laboratory, shops and a replica of his original Black Maria film studio, I reflected on what Edison might have thought of the iPhone SE and Waze software that had conquered my aversion to the chronic congestion and confused highway grid of northern New Jersey, testaments to the success of Edison’s friend Henry Ford. He would have admired the miniaturisation of today’s smartphones and the software that can give turn-by-turn instructions with no additional charge to the user. Waze is far from perfect; on my return trip, it originally pointed me in the wrong direction at the entrance to the Garden State Parkway. But Edison insisted on how much work was needed to overcome difficulties, so the glitch probably would not have dimmed his admiration for Waze’s parent company, Google (now formally Alphabet).

The main Edison building was a three-story encyclopaedia of all the tools available in his time for marshalling a staff of master tinkerers, including some with the university credentials that Edison himself never acquired. The machinery advanced in stages, from heavy equipment on the ground floor to the most delicate work on the third. It was a machine for designing, prototyping and developing other machines, and Edison’s magnificent office-library-trophy room included a cot for his schedule of frequent naps.

Edison might be the last great self-taught inventor who also brought technological research and design into the 20th century. By building a staff of researchers, some trained in the emerging US academic science programmes, Edison’s laboratory served as a model for the 20th century’s great industrial laboratories, including General Electric, Bell Labs and the chemical and pharmaceutical giants. Edison’s role in power generation, musical recording, motion pictures and other technology remained an inspiration for decades. Yet some influential economists insist that the age of rapid development of transformative inventions, pioneered by Edison, has reached an end.

The first prominent warning was sounded by the US economist Tyler Cowen in The Great Stagnation (2011). With this short book, Cowen proposed that the economic woes of the US reflected the exhaustion of centuries of comparatively easy innovation, which he compared to the ‘low-hanging fruit’ of a cherry orchard. Another US economist, Robert J Gordon, brought a historical perspective to Cowen’s argument that the low-hanging fruit of innovation had already been picked. In his book The Rise and Fall of American Growth (2016), Gordon described a golden age of rising living standards in the century from 1870 (the year after Edison’s first patent) to 1970. He questioned the impact of the web’s lower transaction costs on the quality of life.

Cowen and Gordon both acknowledged the power and market capitalisation of companies using cloud services to bring buyers, sellers and advertisers together — from Amazon and Google to ‘sharing economy’ newcomers such as Uber and Airbnb. Neither of them, however, considered the possibility that it is not exhaustion of limited technological options but these firms’ success in attracting capital that has held up productivity growth. Two other academics, Clayton M Christensen and Derek Van Bever of Harvard Business School, have made a distinction between ‘process innovations’ that speed manufacture of existing products and reduce transaction costs, and ‘market-creating innovations’ that give rise to new industries and employment. Surviving buildings of Edison’s vast factory complex in West Orange, now undergoing redevelopment as loft apartments, still testify to the jobs that Edison’s laboratories created.

Buildings such as Salesforce Tower and the new Apple headquarters in downtown San Francisco offer six-figure salaries for programming talent. They do not offer the kind of well-paid blue-collar jobs of the half-century from 1920–70 that Gordon studied. There is no proof, but it’s worth considering whether the skyrocketing market capitalisation of Silicon Valley’s so-called ‘unicorns’ — corporations that are worth a billion dollars or more but have not yet gone public — are growing at the expense of undercapitalised market-creating innovations. Consider two facts: first, every year magazines such as Scientific AmericanMIT Technology Review and New Scientist publish lists of ‘breakthrough’ technologies. Yet at the same time, as the historian of military technology David Edgerton has documented in The Shock of the Old(2006), the actual rate of technological change is surprisingly slow.

The stark fact of technological transformation from the late-18th century to the late-20th is that there was scant low-hanging fruit. Innovation, much less transformation, was arduous and slow. In a book that launched a genre, Self-Help (1859), the Scottish physician-journalist Samuel Smiles presented the leitmotif of success as almost superhuman perseverance under difficulties (quoting John Ruskin on patience as ‘the finest and worthiest part of fortitude’). In his bestseller, Smiles inspired readers with tale after tale of craft heroes such as the 16th-century French Protestant potter Bernard Palissy, who burned his household furniture to perfect his glazing technique.

It took decades for the efforts of dozens of inventors to be melded into industries

Like many later motivational works, Self-Help could not avoid survivorship bias; there must have been many equally resilient entrepreneurs with brilliant ideas who simply ran out of chairs — or money — to burn. But it is important to remember that the triumphs of physics, chemistry and engineering that Gordon and other economic and business historians highlight resulted from years of struggle. Most took decades to become consumer staples. They were slow to scale. Often, investors were patient, if only because, even after the rise of US science, there was no investment alternative.

Begin with Edison himself. His real genius was not so much the first commercially practical lightbulb filament but an entire system for the generation, transmission and sale of electrical power. Ultimately, the alternating-current technology developed by George Westinghouse proved more profitable and easier to expand than the direct current that Edison insisted was safer, and Edison’s financial backers merged his company into its rival. Mass electrification needed other inventors as well. While most households in Northeastern industrial states and California had electric power by 1921, every lightbulb took 30 seconds for a skilled glassblower to produce. The modern Corning ribbon machine, which could produce 300 lightbulbs per minute, was not developed until 1926. The electrification of most of the South and West, and the rural Midwest, did not start until the 1930s. Mass electrification outside the big cities took half a century.

Typically, entrepreneurship depended less on the ideas of a single experimenter than on the formation of patent consortia pooling multiple inventors’ ideas. It was the failed actor Isaac Merritt Singer with his legal ace Edward Clark, for example, who launched the sewing machine industry. The former mill mechanic Gordon McKay unleashed the giant United Shoe Machinery Corporation — a company as controversially dynamic in the 1890s as Microsoft would become a century later — by combining shoe-manufacturing patents. (McKay’s immense bequest to Harvard probably funded some of the computer science professors who taught Bill Gates and Zuckerberg.) It took decades for the efforts of dozens of inventors’ proposals to be melded into industries, and more than another 10 years for the ideas of Nikolaus Otto, Gottlieb Daimler, Carl Benz and Wilhelm Maybach to coalesce in the original Benz automobile in 1886. The first high-quality, popularly priced assembly-line automobile, Henry Ford’s Model T, did not appear until 1908.

Mass print media, too, demanded perseverance. At the beginning of the 19th century, paper was still made sheet by sheet. The first patent for the continuous production of paper with a system of moving screens and rollers was granted to Louis Robert in 1799. The English paper manufacturers Henry and Sealy Fourdrinier made technical improvements to this process, but not enough to make it practical, and they were forced to declare bankruptcy after spending £60,000. It was a third party, the engineer Bryan Donkin, who finally made usable continuous papermaking machines based on the first patent.

For the remainder of the article, go to:  https://medium.com/aeon-magazine/what-silicon-valley-wont-admit-about-technology-and-progress-dfe781e74a5c.